skip to main content


Search for: All records

Creators/Authors contains: "Wang, Fangfang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This paper describes the development of mixed B-site pyrochlore Y2MnRuO7electrocatalyst for oxygen evolution reaction (OER) in acidic media, a challenge for the development of low-temperature electrolyzer for green hydrogen production. Recently, several theories have been developed to understand the reaction mechanism for OER, though there is an  uncertainty in most of the cases, due to the complex surface structures. Several key factors such as lattice oxygen, defect, electronic structure, oxidation state, hydroxyl group and conductivity were identified and shown to be important to the OER activity. The contribution of each factor to the performance however is often not well understood, limiting their impact in guiding the design of OER electrocatalysts. In this work, we showed mixed B-site pyrochlore Y2MnRuO7catalyst exhibits 14 times higher turnover frequency (TOF) than RuO2while maintaining a low overpotential of ~ 300 mV for the entire testing period of 24 h in acidic electrolyte. X-ray photoelectron spectroscopy (XPS) analysis reveals that this B-site mixed pyrochlore Y2MnRuO7has a higher oxidation state of Ru than those of Y2Ru2O7, which could be crucial for improving OER performance as the broadened and lowered Ru 4d band resulted from the B-site substitution by Mn is beneficial to the OER kinetics.

     
    more » « less
  2. SUMMARY

    Arabidopsis thalianaABSCISIC ACID INSENSITIVE3 (ABI3) is a transcription factor in the B3 domain family. ABI3, along with B3 domain transcription factors LEAFY COTYLEDON2 (LEC2) and FUSCA3 (FUS3), and LEC1, a subunit of the CCAAT box‐binding complex, form the so‐called LAFL network to control various aspects of seed development and maturation. ABI3 also contributes to the abscisic acid (ABA) response. We report on chromatin immunoprecipitation‐tiling array experiments to map binding sites for ABI3 globally. We also assessed transcriptomes in response to ABI3 by comparing developingabi3‐5and wild‐type seeds and combined this information to ascertain direct and indirect responsive ABI3 target genes. ABI3 can induce and repress its transcription of target genes directly and some intriguing differences exist incismotifs between these groups of genes. Directly regulated targets reflect the role of ABI3 in seed maturation, desiccation tolerance, entry into a quiescent state and longevity. Interestingly, ABI3 directly represses a gene encoding a microRNA (MIR160B) that targetsAUXIN RESPONSE FACTOR(ARF)10andARF16that are involved in establishment of dormancy. In addition, ABI3, like FUS3, regulates genes encodingMIR156but while FUS3 only induces genes encoding this product, ABI3 induces these genes during the early stages of seed development, but represses these genes during late development. The interplay between ABI3, the otherLAFLgenes, and theVP1/ABI3‐LIKE(VAL) genes, which are involved in the transition to seedling development are examined and reveal complex interactions controlling development.

     
    more » « less